Electrical Impedance Tomography: Methods, History and Applications (Series in Medical Physics and Biomedical Engineering)
R 3,322
or 4 x payments of R830.50 with
Availability: Currently in Stock
Delivery: 10-20 working days
Condition: USED (All books are in used condition)
Condition - Very Good The item shows wear from consistent use, but it remains in good condition and functions properly. Item may arrive with damaged packaging or be repackaged. It may be marked, have identifying markings on it, or have minor cosmetic damage. It may also be missing some parts/accessories or bundled items.
Electrical Impedance Tomography: Methods, History and Applications (Series in Medical Physics and Biomedical Engineering)
Used Book in Good Condition
In recent years, there has been steady progress in the research of electrical impedance tomography (EIT), leading to important developments. These developments have excited interest in practitioners and researchers from a broad range of disciplines, including mathematicians devoted to uniqueness proofs and inverse problems, physicists dealing with bioimpedance, electronic engineerers involved in developing and extending its applications, and clinicians wishing to take advantage of this powerful new imaging method. With contributions from leading international researchers, Electrical Impedance Tomography: Methods, History and Applications provides an up-to-date review of the progress of EIT, the present state of knowledge, and a look at future advances and applications.
Divided into four parts, the book presents an interdisciplinary approach. The first part discusses reconstruction algorithms while the second part describes the aspects of EIT instrumentation, including frequencies and electrodes. The third part features various EIT studies, such as breast cancer screening and artificial ventilation in intensive care units. The final part surveys new developments in magnetic induction tomography and magnetic resonance EIT (MREIT) as well as offers insight into three of the most productive and longstanding EIT research groups. The book also includes two nontechnical appendices that provide a brief and simple introduction to bioimpedance and the methods of EIT.
Written in a style accessible to all related backgrounds, this reference will be helpful in establishing new methods and experiments of EIT, hopefully leading to radical breakthroughs in mainstream clinical practice.